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SUMMARY 

General  parameter-plane  equations  are  derived  to  generate  stability  bound- 
aries  for  a  class  of  systems  characterized  by  a  feedback loop that  contains  a 
complementary  filter  and  a  model  for  either  the  low- or high-frequency  portion 
of the  plant.  This  combination  allows  those  frequencies of the  part  of  the 
plant  that is modeled  to  be  fed  back  for  control  while  suppressing  other 
frequencies . 

For all  specific  examples  considered,  the  stability  regions  obtained  using 
the  complementary  filter  and  frequency  model  were  larger  (and  in  some  cases, 
considerably  larger)  than  those  obtained  using  a  low-pass  filter  in  the  feed- 
back of the  system  output.  Furthermore,  higher  gain  control  was  possible. 

INTRODUCTION 

A filter  can be thought  of  as  a  circuit,  a  differential  equation, or a 
transfer  function  which  passes  certain  frequencies  in  an  input  while  attenuat- 
ing or rejecting  others.  The  specific  filter  discussed  in  this  paper is 
referred  to  as  a  complementary  filter. It consists  of  two  subfilters - a 
high-pass  filter  and  a  corresponding  low-pass  filter - the  outputs  of  which 
are  summed. 

A primary  application  of  the  complementary  filter  is  as  follows.  Suppose 
two  different  sensors  are  used  to  measure  a  state  of  a  system.  Moreover,  let 
the  first  instrument be good  at  measuring  the  high-frequency  content  of  the 
signal  but  not  the  low-frequency  content. In other  words,  the  first  instrument 
records  the  signal  plus  a  low-frequency  noise.  The  second  instrument  gives  an 
accurate  indication  of  the  signal  at  the  low  frequencies  but  degrades  at  the 
higher  frequencies  (high-frequency  noise).  One  approach is to pass the  signal 
from  the  first  instrument  through  a  high-pass  filter  and  the  signal  from  the 
second  instrument  through  a  low-pass  filter  and  then sum the  results  to  get  a 
representation  of  the  whole  signal.  The  only  constraint  placed  on  this  system 
by  the  complementary  filter is that  the  transfer  functions  of  the  high-pass  and 
the  low-pass  filters  must sum to  unity.  Under  ideal  conditions  of  no  noise, 
a  signal  which  passes  through  a  complementary  filter  will  be  reproduced  exactly. 
No distortion or phase  shift  will  occur  in  the  signal.  However,  with  noise, 
this  will  not be the  case.  With  a  noisy  input,  parameters  in  the  complementary 
filter  are  adjusted so that  the  total  impurity  from  the  low-frequency  noise  in 
the  first  instrument  and  the  high-frequency  noise  in  the  second  instrument  is 
minimized. 

The  complementary  filter  is  a  simple  concept,  but  at  the  same  time,  it is 
a  very  powerful  and  useful  concept.  The  complementary  filter  in  earlier  work 
(refs. 1 and 2) is  referred  to  as a "distortionless"  filter.  According  to  the 
editorial  comment  in  reference 1, this  type  of  filter  enjoyed  much  success  in 
a  variety  of  applications  around 1956. It has  applications  in  aircraft  flight 



measurements  and  inertial  navigation  (refs. 3 ,  4, and 5 ) .  A  compensation- 
filtering  scheme  was  used  in  reference 3 to  significantly  increase  the  band- 
width  of  an  early  Skylab  control-moment-gyro  system  configuration  by  combin- 
ing  noisy  position-sensor  information  and  "clean"  rate-command  information. 
For practical  reasons,  the  rate  command  was  used  instead  of  the  actual  system 
rate.  In  this  sense,  the  compensation  filter  is  a  complementary  filter.  Brown 
(ref. 4 )  discussed  the  relationship  of  the  complementary  filter  to  the  Kalman 
filter.  Higgins  (ref. 6 )  continued  this  comparison  and  showed  that  the  comple- 
mentary  filter  is  a  special  case  of  a  steady-state  Kalman  filter.  Schmidt 
(ref. 7) compared  the  complementary  and  Kalman  filters  for  the S T O W  system. 
It is  important  to  note  at  this  point  that  application  of  the  complementary 
filter  does  not  require  any  knowledge  of  the  more  complex  Kalman  filter. 

Accurate  mathematical  models  of  the  high-frequency  modes  of  a  system  are 
not  always  available.  Consequently,  in  a  control  design  based on models  of  the 
low-frequency  modes,  it  may  be  undesirable  to  feed  back  the  very  high  frequen- 
cies,  which  were  not  taken  into  account  in  the  control  design.  Also,  in  flexi- 
ble  booster  control,  it is important  not  to  set  up  any  resonance  with  the  struc- 
tural  mode  of  the  system.  At  the  same  time,  however,  it  is  desired  to  control 
the  rigid-body  modes. A novel  and  ingenious  use  of  the  complementary  filter 
was  made  by  Tutt and Waymeyer  (ref. 8 )  in  flexible  booster  control:  "This 
approach  does  not  adapt  to  body  bending,  but  instead is contrived  to  ignore 
it . . ." by  using  the  basic  concept  of  the  complementary  filter  and  a  rigid- 
bdy model  in  the  feedback  loop.  This  same  basic'idea  was  recently  applied  in 
the  high-vibration  environment  of  a  helicopter  to  eliminate  low-frequency  rotor- 
induced  vibrations  (refs. 9 and 1 0 ) .  This  latter  work  used  a  high-frequency 
plant  mode 1. 

The  objective  of  this  paper is to  apply  the  parameter-plane  method  (ref. 1 1  ) 
to derive  stability  boundary  equations  for  a  particular  class  of  systems 
(defined  by  a  general  block  diagram),  which  use  the  Tutt  and  Waymeyer  (ref. 8 )  
feedback  approach.  The  parameter-plane  method is used  to  display  the  stability 
region  in  the  two-dimensional  space  of  a  parameter  of  the  complementary  filter 
and  a  control  gain.  Specific  examples  are  presented,  and  a  standard  low-pass 
filter  feedback is used  for  comparison. 

SYMBOLS 

A (I, J) matrix  element  in  the  Ith row and  Jth  column 

A function of S defined  in  deriving  explicit  expressions  for K 
and T 

AR  ,AI  real  and  imaginary  parts  of  A,  respectively 

B function  of S defined  in  deriving  explicit  expressions  for K 
and T 

BRIBI  real  and  imaginary  parts  of B,  respectively 
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C 

cR r C I  

D 

function of S defined i n  deriving  explicit  expressions  for 
and T 

real and imaginary parts of C ,  respectively 

function of S defined i n  deriving  explicit  expressions  for 
and T 

real and imaginary parts Of D, respectively 

denominator of the I t h  transfer  function G ( 1 )  

denominator of system transfer  function H(S) 

characteristic  equation, or denominator of H ( S )  relatively prime 
to  N ( S )  

Laplace transform of input  signal  to complementary f i l t e r  

transfer  function of the I t h  system 

system transfer  function 

high-frequency noise 

=G 
integers 

system control  gain  constant 

particular values of K 

low-frequency noise 

function  defined i n  equation (37) 

numerator of the I t h  transfer  function G (I) 

numerator of system transfer  function H (S)  

numerator of H ( S )  relatively prime to  D (S) 

Laplace complex variable 

absolute value of S 

parameter i n  low-pass and high-pass f i l t e r s  

particular values of T 
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time 

Laplace t ransform  of   sys tem  input  

outputs   of   low-frequency  and  high-frequency  plant   models ,   respect ively 

XH after passing  through low-pass f i l t e r  

Laplace t ransform of system  output 

Laplace t ransform of o u t p u t  s i g n a l  from  complementary f i l t e r  

func t ions   de f ined   i n   equa t ions  (33)  , ( 3 4 )  , and (35) , r e s p e c t i v e l y  

quan t i t i e s   wh ich  take on t h e   v a l u e s   o f   e i t h e r   u n i t y  or negat ive   un i ty  

real  part of S 

imaginary part  o f  S 

ANALYSIS 

The complementary f i l t e r  is b r i e f ly   d i scussed ,   t hen   t he   sys t em block diagram 
f o r   t h e   p r e s e n t   a n a l y s i s  is presented,   fol lowed by a formulat ion  of   the  charac-  
t e r i s t ic  equa t ion   o f   t he   sys t em.   Us ing   t h i s   cha rac t e r i s t i c   equa t ion   fo r   t he  
block  diagram,  the  parameter-plane  method  (ref. 1 1 )  is used to  develop   genera l  
e q u a t i o n s   f o r   g e n e r a t i n g   s t a b i l i t y   b o u n d a r i e s   i n   t h e   p l a n e   d e f i n e d  by a f i l t e r  
parameter and   the   sys tem  cont ro l   ga in .   S tab le   reg ions  are i d e n t i f i e d  from these  
s t a b i l i t y   b o u n d a r i e s .  

Complementary F i l t e r  

F igure  1 shows the  complementary f i l t e r   o p e r a t i n g  on an  uncorrupted  s ignal  
F (S) and  having  an o u t p u t  Y ( S )  . Since  H ( S )  and 1 - H ( S )  occur i n  para l le l  , 
t h e   r e s u l t a n t   t r a n s f e r   f u n c t i o n  is given by t h e i r  sum, which is u n i t y  - hence, 
t he  name complementary f i l t e r .  The p o i n t  to  be made f rom  f igu re  1 is t h i s :  
If a s i g n a l   F ( S )  passes through a h i g h - p a s s   f i l t e r   w i t h   t r a n s f e r   f u n c t i o n  
H(S) and a low-pass f i l t e r   w i t h   t r a n s f e r   f u n c t i o n  1 - H(S) , which are comple- 
mentary,   and  i f   the   s ignals   f rom  the t w o  f i l t e r s  are summed, then   the  o u t p u t  
s i g n a l  Y ( S )  w i l l  be t h e  same as t h e   i n p u t   s i g n a l   F ( S ) .   T h e r e  is no distor- 
t i o n  or phase   sh i f t   o f   t he   i npu t .  

F igure  2 shows a complementary f i l t e r   w i t h   n o i s y   i n p u t s .   S u p p o s e  R is 
a low-frequency  noise  and h is a high-frequency  noise.  The o u t p u t  is 
descr ibed  by 

= F(S) + {H(S)a + [ l  - H(S)]h)  
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Notice i n  equation (1 ) t h a t  Y ( S )  = F(S)   excep t   fo r   t he   r e s idua l  error term 
i n   t h e   b r a c e s .  

F igure  3 shows t h e   s p e c i f i c  form of  the  complementary f i l t e r  of interest  
i n   t h i s  paper. Equation (1 ) becomes 

Y ( S )  = F(S)  + ( T Z  - I)' (&)h 

In   s igna l   p rocess ing ,   t he   p rob lem is to choose T to minimize   the   res idua l  
error. The fo l lowing   s ec t ion   u ses   t he  same f i l t e r  components shown i n  f i g u r e  3 
b u t   w i t h   d i f f e r e n t   i n p u t s  to accomplish a d e s i r e d   o b j e c t i v e .  The in f luence  of 
T o n   s y s t e m   s t a b i l i t y  is emphasized. 

Frequency  Feedback Model With  Complementary F i l t e r  

Figure 4 shows the  system  block  diagram  examined  in   this  paper. The  system 
has an i n p u t  U ( S )  and  an o u t p u t  X ( S )  . The o v e r a l l   p l a n t  is composed o f  low-  
frequency and  high-frequency  plants  preceded by a servo. The complementary 
f i l t e r   c o n s i s t s   o f   t h e   s p e c i f i c   h i g h - p a s s  and low-pass f i l t e r s  shown i n   f i g -  
u r e  3 .  The o b j e c t i v e  is to examine s t a b i l i t y   r e g i o n s   i n   t h e   p l a n e  of t h e   f i l t e r  
parameter T and  the  system  gain K. 

The o p e r a t i o n   d e p i c t e d   i n   f i g u r e  4 is explained as follows: L e t  XL and 
XH be t h e  o u t p u t s  of   the  low-frequency  plant   and  high-frequency  plant ,  respec- 
t ive ly .   I f   t he   l ow- f requency   p l an t  model and  servo model are exact   models ,   then 
the  o u t p u t  of   the   low-frequency  plant  model w i l l  also be XL. Notice t h a t   t h e  
inpu t  to t h e   h i g h - p a s s   f i l t e r  component  of  the  complementary f i l t e r  is XL, whi le  
XL + XH is t h e   i n p u t  to the  low-pass f i l t e r  component. S ince  XL passes 
through  both  the  high-pass   f i l ter   and low-pass f i l t e r  components  of  the comple- 
m e n t a r y   f i l t e r ,  it w i l l  be  unchanged.  Meanwhile, XH passes through  the l o w -  
pass f i l t e r .  Hence, as shown, the   r e su l t an t   f eedback  is XL + ( X H ) L ~ ,  t h a t  is, 
t h e   o u t p u t   o f   t h e  low-f requency   p lan t  pl-us the  output   f rom  the  high-f   requency 
plant  which  has  been  passed  through a low-pass f i l t e r .  The term (XH) Lp is 
the  low-frequency part  of the  high-frequency p lan t .  Adjus t ing  T a d j u s t s   t h e  
low-frequency part of XH t h a t  is fed  back f o r   c o n t r o l .   T h i s  paper examines 
t h e   e f f e c t  of K and T o n   s y s t e m   s t a b i l i t y .  

C h a r a c t e r i s t i c   E q u a t i o n  

The no ta t ion  i n  f i g u r e  4 is convenient   for   der iv ing   genera l   express ions  
invo lv ing   t he   sys t em  t r ans fe r   func t ions .  The N ( 1 ) ' s  and D ( 1 ) ' s  are t h e  
numerators  and  denominators,   respectively,  of the   b lock   t r ans fe r   func t ions .  
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with 

where N ( S )  and D ( S )  signify  polynomials  in S which  may  have  some  common 
factors  that  can be canceled.  The  numerator N ( S )  of  the  transfer  function 
and  the  denominator D ( S )  have  no  common  factors  and  are  mathematically  said 
to be relatively  prime  polynomials  in S .  

The  polynomial D ( S )  is  referred  to  as  the  characteristic  polynomial,  and 
D ( S )  = 0 is called  the  characteristic  equation.  Roots  of D ( S )  are  called 
characteristic  roots. It is well  known  that a linear,  time-invariant  system 
is  stable (X (t) + 0 as t + ") if  and  only  if  all  roots  of  the  characteristic 
equation  have  negative  real  parts. 

The  system  transfer  function H ( S ) ,  expressed  in  terms  of  the  individual 
G ( I )  block  transfer  functions  in  figure 4, is  easily  shown  to  be 

K [ G ( 1 )  + G ( 2 )   l G ( 6 )  
H ( S )  = ( 5 )  

1 + K [ G ( 4 )   G ( 5 )   G ( 7 )  + G ( l )   G ( 3 )   G ( 6 )  + G ( 2 )   G ( 3 )   G ( 6 ) ]  

Replacing  the G ( 1 ) ' s  in  equation ( 5 )  with  their  equivalent  ratios  shown  in  fig- 
ure 4 allows  equation (5) to be written  as  equation ( 4 )  with 

i ( S )  = K[N(1) D ( 2 )  + D ( 1 )   N ( 2 ) ] N ( 6 )   D ( 1 )   D ( 2 )   D ( 3 )   D ( 4 )   D ( 5 )   D ( 6 )   D ( 7 )   ( 6 )  

N 

D ( S )  = D ( 1 )   D ( 2 )   D ( 6 ) { D ( 1 )   D ( 2 )   D ( 3 )   D ( 4 )   D ( 5 )   D ( 6 )   D ( 7 )  

+ K [ D ( l )   D ( 2 )   D ( 3 )   N ( 4 )  N(5) D ( 6 )   N ( 7 )  

Notice  in  figure 4 that 
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N ( 4 )  = Ts 

D ( 4 )  = D ( 3 )  

N ( 3 )  = 1 

D ( 3 )  = TS + 1 

For perfect modeling, G (  

N ( 5 )  = N ( 1 )  

D ( 5 )  = D ( 1 )  

N ( 7 )  = N ( 6 )  

D ( 7 )  = D ( 6 )  

5 )  = G ( 1 ) ,  and G ( 7 )  = G (6) : therefore, 

N ( S )  = D ( 1 )   D ( 2 )   D ( 4 )   D ( 5 )   D ( 6 )   D ( 7 )   N ( S )  

For convenience, equation ( 6 )  is expressed as 

- 

where 

Equations (9) , ( 1   3 )  , and (1  5 )  allow  equation ( 7 )  to be factored  as 

where 



The rat io  of N(S) t o  D(S) is the system transfer  function.  Recall  that 
D(S) = 0 is the  characteristic equation. By equations ( 8 )  , ( 1  0 )  , ( 1 1 )  , ( 1  2 )  , 
and ( 1 4 ) ,  the characteristic equation can be expressed  as 

D ( 1 )  D(2)  (TS + 1 )  D(6)  + K[D(2) (TS) N ( l )   N ( 6 )  + N ( l )  D(2)   N(6)  

+ D ( 1 )  N(2)   N(6)  1 = 0 (20)  

A more convenient and  compact  form  of the  characteristic equation  for  appli- 
cation of the  parameter-plane method is 

T A + K T B + K D + C = O  (21 1 

where 

A = SC(D(1)   D(2 )   D(6 ) I   (22 )  

B = SrD(2) N ( l )  N(6)  1 (23)  

C = D ( 1 )  D(2)   D(6)   (24)  

D = N ( 1 )  D(2)   N(6)  + D ( 1 )  N(2)   N(6)   (25)  

The values of S which satisfy equation (20)  or equation (21 ) are  the char- 
acteristic  roots.  Clearly,  these  roots w i l l  vary as K and T take on differ- 
ent  values. The parameter-plane method is used to examine how the s tab i l i ty  con- 
dition  (stable or unstable) changes w i t h  different combinations of K and T. 

Stabil i ty Boundaries 

I n  t h i s  section,  equations  are  derived  to  generate  stability boundaries 
i n  the  plane of K and T for  the system shown i n  figure 4. For comparative 
purposes, similar  equations  are developed for a low-pass f i l t e r  feedback system. 
T h i s  l a t te r  system is the same as  the system i n  figure 4,  except that the  path 
through the  servo model, frequency model,  and high-pass f i l t e r  is removed. 

Complementary f i l t e r  system.- The numerators and denominators of the block 
transfer  functions i n  figure 4 are  functions of S. Consequently, A, B, C, 
and D i n  equations (22)  to (25)  are  functions of S. Let S = i w  and write 
A, B , C, and D as complex  numbers: 
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C = CR + iCI 

Substituting  equations (26) to (29)  into  equation (21) and  setting  the 
resulting  real  and  imaginary  parts  equal to zero  yields  the  two  simultaneous 
equations for K and T: 

Subtract  equation (31) multiplied  by (TBR + DR)  from  equation (30) multiplied 
by ("BI + Dl) to  get  the  quadratic  equation  in T: 

where 

The roots of equation (32) are 

-$ f fi 
T =  

2a 

where 
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The two roots i n   e q u a t i o n  (36) are denoted as TI f o r   t h e   p o s i t i v e  radical and 
as T2 for the n e g a t i v e   r a d i c a l .  The ga in  K, ob ta ined  by adding  equat ions (30) 
and ( 3 1 )  I is 

I n   e q u a t i o n  (38)  , K = K1 when T = T1 , and K = K2 when T = T2. 

A t  t h i s   p o i n t ,  it may be worthwhile to state e x p l i c i t l y   t h e  meaning  of equa- 
t i o n s  (36)  and ( 3 8 ) .  For p a r t i c u l a r   c o n s t a n t   v a l u e s   o f  K and T, the   charac-  
t e r i s t ic  equat ion  w i l l  have a set of   corresponding roots. A s  K and T are 
va r i ed ,   t hese  roots w i l l  move, generating  root-locus  curves.   Suppose it is 
desired to  f ind   va lues  for K and T which r e s u l t   i n  a root-locus cu rve   i n t e r -  
s ec t ing   t he   imag ina ry   ax i s  a t  some s p e c i f i e d   p o i n t  S = im*, where w* is a 
particular value of W. This  is accomplished by s e t t i n g  S = iw* i n   t h e   c h a r -  
acteristic equat ion ,   equa t ing   the  real and  imaginary parts to zero,   and  solving 
the  two re su l t i ng   s imul t aneous   equa t ions  for K and T. 

Equations (36)  and (38) produce those  combinat ion  values   of  K and T 
which w i l l  r e s u l t   i n  a root-locus cu rve   i n t e r sec t ing   t he   imag ina ry   ax i s  a t  
S = i w .  For a given  value of w, the   va lue   o f  T is calculated from  equa- 
t i o n  ( 3 6 ) ,  which is an implicit func t ion  of w. Then, K is calculated from 
equat ion  (38) u s i n g   t h i s   v a l u e  of T and  the same value of w. By l e t t i n g  
w vary, a plot of K versus  T can be generated.  The r e s u l t i n g   c u r v e s  are 
s t a b i l i t y   b o u n d a r i e s   t h a t   c o r r e s p o n d  to  the   imag ina ry   ax i s   i n   t he   S -p lane .  
Hence, i n   t h e  same manner t h a t   t h e   i m a g i n a r y   a x i s   d i v i d e s   t h e   S - p l a n e   i n t o  a 
stable r eg ion   ( l e f t   ha l f -p l ane )   and   an   uns t ab le   r eg ion   ( r igh t   ha l f -p l ane ) ,   t he  
s t a b i l i t y   b o u n d a r i e s   p a r t i t i o n   t h e   p l a n e   o f  K and T i n t o  stable and  unstable  
regions.  

S ince   on ly  real va lues  of T are of practical i n t e r e s t ,   c a l c u l a t i o n s  are 
only  cont inued for M 2 0 i n   e q u a t i o n  (37). Also, s i n c e   t h e   c h a r a c t e r i s t i c  
roots occur  in  complex-conjugate pairs, it is s u f f i c i e n t  to plot T versus  K 
as W increases  from  zero.   Using negative va lues  of w would on ly  duplicate 
t h e   r e s u l t s   o b t a i n e d  for pos i t i ve   va lues   o f  W. 

Low--ass f i l t e r  system.- The low-pass f i l t e r   s y s t e m  is t h e  same as the  sys-  
tem s h b  i n   f i g u r e  4, except   tha t   the   pa th   pass ing   th rough  the  servo model, 
frequency model, and  high-pass f i l t e r  is omitted. It can  be shown t h a t   t h e  
associated c h a r a c t e r i s t i c   e q u a t i o n  is 

D ( S )  = D ( 1 )  D(2) D(3)  D(6) + K [ N ( l )  D(2) N(3)  N(6) 

+ D ( 1 )  N(2)  N(3) N(6) ]  = 0 (39) 

1 0  



Equations ( 1  0) and ( 1 1 )  permit  equation (39)  to be written  as 

D ( 1 )  D(2 )  (TS + 1 )  D(6)  + K[N(l)  D(2)  N(6) + D ( 1 )  N(2)   N(6)l  = 0 

or, in  the  more  convenient  form, 

A(TS + 1 )  + KB = 0 

where 

A = D ( 1 )  D(2)   D(6)   (42)  

B = [ N ( 1 )  D(2)  + N ( 2 )   D ( l ) ] N ( 6 )   ( 4 3 )  

Setting S = iw and  using  the  complex  representations  for  A  and  B 
(eqs. (26)  and ( 2 7 ) )  modifies  equation (41)  to 

Setting  the  real  and  imaginary  parts  in  equation (44)  equal  to  zero  results  in 
the  two  simultaneous  equations: 

The  simultaneous  solutions  of  equations (45)  and (46)  are 

- ( A R ~  + ~ ~ 2 )  
K =  

In  equations (47)  and ( 4 8 ) ,  T and  K  are  single-valued  functions of W. 
1 1  



Zero c h a r a c t e r i s t i c  roo>.- It is o n l y  natural  t h a t   i n   s o l v i n g   f o r  T to 
obta in   equat ions   (36) -  -and (47) , d i v i s i o n  by ze ro  is encountered .   This   fo l lows  
because T always  appears  with S i n   t h e   t r a n s f e r   f u n c t i o n s  for t h e  low-pass 
and  high-pass f i l ters i n   f i g u r e  4. With S = i w ,  one  can  think about s o l v i n g  
for WT and  then  dividing by W to ge t   an   equa t ion  for T. The w is shown 
expl ic i t ly   in   the  denominator   of   equat ion  (47)   for   emphasis .   Hence,   in   generat-  
i n g   t h e  s t a b i l i t y  boundaries,  special a t t e n t i o n  must be given to  the   ques t ion :  
What combination  values of T and K result  i n   t h e   c h a r a c t e r i s t i c   e q u a t i o n  
having  zero roots ( S  = O ) ?  The computer  program  which  formed  the  system  charac- 
terist ic equat ion from t h e  component t r a n s f e r   f u n c t i o n s   a n d   t h e n  solved f o r  i ts  
roots used the   fo l lowing   convenient   no ta t ion .  

L e t  

N ( 1 )  = A(1, l )  + A ( l  ,2 )S  + A(l  ,3)S2 + . . . (49) 

D(1) = A(2, l )  + A(2,2)S + A(2,3)S2 + . . . (50) 

and so f o r t h .  Then, form the   mat r ix   where   the  f i r s t  row c o n t a i n s   t h e   c o e f f i -  
c i en t s   o f   t he   po lynomia l   N( l )  , t he  
nomial   D(l)  , etc. Symbolically,  

A(1  12) 

A(212) 

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

. . .  

second row t h e   c o e f f i c i e n t s   o f   t h e   p o l y -  
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The c o n s t a n t  term f o r  N ( 1 )  is A ( l   , l ) ;  for D ( 1 ) ,  is A ( 2 , 1 ) ,  etc. Using 
t h i s   n o t a t i o n  and s e t t i n g  S = 0 in   equat ion   (20)   g ives  

- A ( 2 , 1 )   A ( 4 , l )   A ( 1 2 , l )  

A ( l  , l )  A ( 4 , l )   A ( 1 1 , l )  + A ( 2 , l )   A ( 3 , l )   A ( 1 1 , l )  
K =  . ~~~. ” ~~ 

For la ter  a p p l i c a t i o n s ,  N ( 6 )  = 1 or A (1 1 , l )  = 1 , so t h a t   e q u a t i o n  ( 5 2 )  
reduces to 

When K has  the  value  computed  using  equation (53), t h e   c h a r a c t e r i s t i c  
equa t ion  has a root on the  imaginary   ax is  a t  t h e   o r i g i n ,   r e g a r d l e s s  of the   va lue  
of T. This   cons tan t   va lue  of K,  f o r   a r b i t r a r y   v a l u e  of T,  is plotted also 
i n   t h e  parameter p lane  as a s t a b i l i t y  boundary. I n   t h e  K,T plot, t h i s  special 
boundary appears as a v e r t i c a l   l i n e  which i n t e r s e c t s   t h e  K-axis a t  the   va lue  
assigned by equa t ion  ( 5 3 ) .  

I n f i n i t e   c h a r a c t e r i s t i c  roots.- To o b t a i n   t h e   s t a b i l i t y   b o u n d a r i e s  associ- 
ated w i t h   i n f i n i t e   c h a r a c t e r i s t i c  roots, the  combination  values  of T and K 
which s a t i s f y   t h e  characteristic equa t ion  when IS1 = I i w l  + are computed. 
T h i s  is accomplished by d i v i d i n g  t h e  c h a r a c t e r i s t i c   e q u a t i o n  by its maximum 
power i n  S. Afterwards, t h e   o n l y  term not  having some power of S i n   t h e  
denominator is t h e   o r i g i n a l   c o e f f i c i e n t  of t h e  maximum power of S. Hence, as 
IS1 + QD, t h i s  c o e f f i c i e n t  approaches z e r o   i n  order to  sat isfy the  remaining 
c h a r a c t e r  i s t ic  equat ion.  

__ -~ ~ 

For a l l  subsequent   appl ica t ions ,  t h e  maximum power of S i n   t h e   c h a r a c -  
ter is t ic  equa t ion  w i l l  o c c u r   i n   t h e  D (1 ) D ( 2 )  (TS) D ( 6 )  term i n   e q u a t i o n s  ( 2 0 )  
and ( 4 0 ) .  A f t e r   d i v i d i n g  by the  maximum power of S a n d   a f t e r w a r d s   l e t t i n g  
I S  I -+ 03, there   remains  a c o n s t a n t  term times T equated to zero. After divid-  
i ng  by t h i s   c o n s t a n t  term, T = 0. The resul t  is t h a t  T = 0 and K a r b i t r a r y  
is a s t a b i l i t y  boundary, t h a t  is, t h e  K-axis. 

S t a b i l i t y   R e g i o n s  

As t he   coo rd ina t ing  parameter w > 0 i n c r e a s e s   i n   t h e  set of equa t ions  
developed for K and T, a plot of T ve r sus  K can be drawn as, for example, 
i n   f i g u r e  5.  T h i s   p a r t i t i o n s   t h e  T,K p l a n e   i n t o   d i f f e r e n t   r e g i o n s   w h i c h  are 
e i t h e r  stable or unstable .  The s t a b i l i t y   c o n d i t i o n   o f  a g iven   reg ion  is then  
evaluated by choosing a p o i n t   i n s i d e   t h e   r e g i o n  and  computing  the  characteris-  
t i c  roots for t h i s   p o i n t .  The  number of roots w i t h   p o s i t i v e  real parts 
( u n s t a b l e .  roots) i n   e a c h   r e g i o n  is circled i n   f i g u r e  5.  A circled ze ro   i nd i -  
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cates a stable region. The  number of unstable  roots gained or lost  i n  moving 
from  one region to another is evident. I n  subsequent applications,  only  the 
stable regions are emphasized. 

Calculation Procedure 

Figure 6 i l lus t ra tes  the general procedure used to  construct  the  stability 
regions for the  complementary-filter system. Firs t ,  a se t  of transfer  functions 
for  the b l o c k s  i n  figure 4 is input to a computer  program.  Next, the quantities 
w ,  M, T I ,  K l ,  T2, and K 2  are obtained from a computer printout generated 
by incrementing w. From this  printout, values of W for which M 2 0 are 
selected  for  further  consideration. The program  has options  for  plotting 
T1 versus K1 or T2 versus K2.  To generate  the s tab i l i ty  boundaries 
(T versus K curves), w is incremented i n  the range where M 2 0, and values 
of T (eq. (36) )  are  plotted  against corresponding  values of K (eq. ( 3 8 ) ) .  
These boundaries can be overlooked if  t h i s  incrementation interval  for W is 
too  large.  Efficient  generation of the s tab i l i ty  boundaries requires  close 
monitoring of the computer printout and plotter by the  investigator. 

The  same procedure is followed for the low-pass f i l t e r  system. The program 
has an option  for  selecting  either the complementary or low-pass f i l t e r  system. 
For the low-pass f i l t e r ,  equations ( 4 7 )  and ( 4 8 )  are  pertinent. 

Degree of. Stabil i ty 

I n  this paper,  the substitution S = iW is used to  generate  stability 
boundaries. For values of K and T fa l l ing w i t h i n  the  stable  regions, con- 
fined by these  boundaries, there  are no characteristic  roots  located on or to 
the right of the imaginary axis i n  the S-plane. I n  a similar manner, s tab i l i ty  
regions could be generated such that  for combination values of K and T fa l l -  
ing w i t h i n  these  regions,  there  are no roots any closer  to  the imaginary axis 
than some specified number 0. Th i s  is accomplished by setting S = 0 + i W  and 
following  the same procedure  described i n  t h i s  paper. For further reading on 
relative  stability,  refer  to  references 11 and 12.  

High-Frequency Plant Model 

A law-frequency plant model is indicated i n  figure 4 because the  objective 
was ultimately, through use  of the complementary f i l t e r ,   t o   f i l t e r  out  the h igh  
frequencies from the feedback signal. 

I n  reference 9,  it was desired  to  filter out  the low frequencies; hence, 
a high-frequency plant model  was used. To use the  equations of t h i s  paper for 
a high-frequency plant model, simply ca l l  G ( 1 )  the high-frequency plant, 
G (2)  the low-frequency plant, and G (5) the high-f  requency plant model,  and 
interchange G ( 3 )  and G ( 4 ) .  
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Approximation Models 

A l l  n u m e r i c a l   r e s u l t s   p r e s e n t e d   i n   t h i s  paper are based on perfect models 
o f   t h e  servo and  low-frequency  plant  of  the real system. To examine   t he   e f f ec t s  
of modeling errors, equat ions  (12)  to (1 5 )   should   no t  be u s e d .   T h i s   t r a n s l a t e s  
i n t o  t h e   f a c t   t h a t  equation (21) still  ho lds ,   excep t   t ha t  

A = S[D(l)   D(2)  D ( 5 )  D(6)  D(7)I (54)  

B = S[D(l)  D(2) N ( 5 )  D(6)  N(7)I  (55) 

C = D ( 1 )  D(2) D ( 5 )  D(6)  D(7)  (56) 

D = N ( 1 )  D(2) D ( 5 )  N(6)  D(7) + D ( l )  N(2) D ( 5 )  N(6)  D(7)  (57) 

Equations  (54) to  (57) allow v a r i a t i o n s   i n   t h e   m o d e l s  G (7)  and G (5) from 
those  of  G(6)  and G ( l )  , respec t ive ly .   Every th ing  else remains t h e  same. 
There are no  changes  in   the  equat ions  corresponding to t h e  low-pass f i l t e r  
s y s  tem . 

The f l i g h t   i n v e s t i g a t i o n   o f  reference 9,  which  used a high-frequency  plant  
model, r e p o r t e d   t h a t   t h e  " . . . overal l   system  performance was i n s e n s i t i v e  to 
mismatch  between  the  dynamics  of  the  plant  and  the p l an t  model used i n   t h e  com- 
plementary f i l t e r  computation." 

APPLICATIONS 

The o v e r a l l   p l a n t  is composed of  two subplants ,  a high-frequency  plant  and 
a low- f requency   p l an t .   Arb i t r a ry   p l an t   t r ans fe r   func t ions  are a s s i g n e d   f o r  numer- 
ical  computat ion.   For   the  high-frequency  plant ,  

and,  for  the  low-frequency plant:  

N ( 1  1 2s + 1 

D ( l )  S2 + 1.4XS + p 
- (59) 

where X and i.1 are e i t h e r  1 or - 1 .  
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Four special  cases  are enumerated  based on the denominator  term i n  the low- 
frequency plant: 

Case 1 : 

.,a.se 2: 

Case 3 :  

Case 4: 

" 

Stabi l i ty  re 

S2 + 1 . 4 s  + 1 

s2 - 1 . 4 s  + 1 

sz + 1 . 4 s  - 1 

s2 - 1 . 4 s  - 1 

gions resulting from €e 

(stable  plant: x = 1 ,  1-1 = 1 )  

(unstable  plant: X = -1 , Fc = 1 )  

(unstable  plant: X = 1, 1-1 = -1 )  

medback implementing a low-pass f i l t e r  
are compared graphically w i t h  those from feedback incorporating  the complemen- 
ta ry   f i l t e r  i n  figure 4 .  Plots  are  presented  for two conditions: ( 1 )  without 
servo (figs.  7 to 1 0 )  and (2)  w i t h  servo (figs.  11 to  1 4 )  . 

Without Servo 

" Case 1 .- Figure 7 shows the block diagram and stable regions resulting from 
use of the low-pass f i l t e r  and the complementary f i l t e r .  Comparing figures 7 (b )  
and 7(c) shows the improvement brought about by using  the complementary f i l t e r .  
Especially note that  larger K values  are  permitted. I n  effect,  larger K 
values mean tighter  control because K enhances the system error so that it 
can be further reduced. 

The s tabi l i ty  boundaries i n  figure 7(b)  and 7(c)  intersect  the K-axis a t  
the same points. T h i s  w i l l  always be the  case, because for T = 0 i n  figure 4 ,  
the complementary f i l t e r  reduced to the low-pass f i l t e r .  

Case 2.- The low-frequency plant has negative damping  and is unstable. 
The block diagram and s tab i l i ty  regions are shown i n  Eigures 8. Note the  negli- 
gible  stable region for  the low-pass f i l t e r  i n  figure 8 (b )  and the  vast improve- 
ment i n  figure 8 (c)  for  the complementary f i l t e r  . 

Case 3.- The results i n  figure 9 show a larger  stable region  for  the com- 
plementary f i l t e r  . " 

Case 4.- Figure 1 0  displays a tremendous  improvement i n  the size of the 
s tab i l i ty  boundary when the complementary f i l t e r  is used over that when the low- 
pass f i l t e r  is used. 

With Servo 

The b l o c k  diagrams i n  figures 1 1 , 1 2, 1 3 ,  and 1 4  are the same as those i n  
figures 7, 8, 9, and 10 ,  respectively,  except  for  the  servo and servo model. 
The sane basic  conclusions persist ,  namely, ( 1 )  the system with the complemen- 
tary  f i l ter  has a larger  stable region i n  the KIT plane than the system w i t h  
only  a low-pass f i l t e r  and (2)  for a given value of T, a stable system  can be 
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maintained  while  using larger  error  gains K for  tighter  control. Inciden- 
tally,  figure l l ( b )  corresponds to  the  stable region shown i n  figure 5 for 
T 2 0. 

CONCLUDING REMARKS 

A complementary f i l t e r  is commonly used i n  signal  processing  to  estimate 
a s ta te  or signal when  more than one  measurement  of the  state is available. I n  
previous work, the complementary f i l t e r  has been  used i n  conjunction wi th  a 
model of the rigid-body modes for  flexible booster  control. Th i s  approach 
allows  the structural modes to be f i l tered from the feedback signal, while the 
low-frequency rigid-body modes are  not. 

I n  t h i s  paper,  general parameter-plane equations  are  derived to generate 
s tabi l i ty  boundaries for a class of systems characterized by a feedback loop 
that  contains a complementary f i l t e r  and a model for  either  the low- or high- 
frequency portion of the  plant. T h i s  combination allows those  frequencies of 
the part of the  plant  that is modeled to be fed back for  control while  suppress- 
i n g  other  frequencies. The plant and  model rational  transfer  functions can be 
specified  arbitrarily. 

Numerical examples are  presented which  compare the  stabil i ty regions 
obtained u s i n g  the  complementary-filter-model system w i t h  those  regions  incurred 
i n  using j u s t  a standard low-pass f i l t e r  feedback. For the  selected examples, 
it is shown that the  complementary-filter-model system produces a larger  stabil- 
i t y  region and allows  larger  error  gains  (tighter  control or regulation)  to be 
used. 

Langley Research  Center 
National  Aeronautics and Space Administration 
Hampton, VA 23665 
September 9,  1980 
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Figure 1 .- Canplementary f i l t e r  with  noise-free  input signal. 
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Figure 3.- Specific form of complementary f i l t e r .  



OVERALL PLANT 
I LOW-FREQ. PLANT I I 

I 

I N(1) XL I 
I G(1) = ~(1) 

I 'Hi N (2) I 

I 

I SERVO 
U(S) \+ I t  

I G(2) = I - G(6) ~ ( 6 )  
- N (6) 

I 
I 
I 

I 
I 

I 

I 
I .  

- I 

HIGH-FREQ.  PLANT 
I 

- 

I I 

I I L ""~""""""~"""""" -I 

I 
SERVO  MODEL 

LOW-FREQ. 
PLANT  MODEL 

Figure 4.- System block diagram. 



,/ 

/ 
5 ;- 

'? 1 ,-Vertical boundary due to zero  roots 

I I -  I 

Figure 5.- Sample s t a b i l i t y  boundaries  with number of unstable  roots   c ircled  in each region. 



Speci fy  system  t ransfer  funct ions  ( f igure 4) 
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Obtain  vaiues  for: w, M, TI, K1, T2, K2 

(Eqs. (36), (371, (38)) 
.- . . .. - 

. .  

Plot  stabi l i ty  boundaries (T versus K )  
(Eqs. (361, (38)) 

- ~~ J " .  .. 

Identi fy  stable  regions  by  computing  characterist ic  roots 
(Eq. (20)) 

- .~ ~ .. 

Figure 6.- Calculation procedure. 
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Figure 7.- Block  diagram  and stable regions for case 1 without servo. 
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Figure 7.- Concluded. 
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Figure 8.- Block diagram and stable  regions  for  case 2 without  servo. 
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(b)  Stable  region  with low-pass f i l t e r .  
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(c) Stable  region  with complementary f i l t e r .  

Figure 8.- Concluded. 
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Figure 9.- B l o c k  diagram and s tab le   reg ions  for case 3 w i t h o u t  servo. 
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Figure 9 .- Concluded. 

30 



LOW-FREQ. PLANT 

S2 - 1.4s - 1 
I I I 

U(S) : - A- 1 7 1  , H I GH-FREQ. PLANT , 

y S2 +.06S + 9 
.3s2 + .45s 4- .9 t 

LOW-FREQ. 
PLANT  MODEL 

I I "4 S2 2 s + 1  - 1.4s - 1 t 
H I GH- PAS S FI LTER 

I LOW- PASS  FILTER 
I 

T S + 1  
1 

(a )  Block diagram. 

Figure 10.- Block diagram and stable  regions  for  case 4 without  servo. 
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(c) Stable  region  with complementary f i l t e r .  

Figure 10.-  Concluded. 
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Figure 11 .- B l o c k  diagram and stable  regions for case 1 with  servo. 
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Figure 12.- B l o c k  diagram and stable  regions  for case 2 with  servo. 
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(c) Stable  region  with complementary f i l t e r .  

Figure 12.- Concluded. 
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(a )  Block diagram. 

Figure 1 3 . -  Block diagram and stable  regions  for case 3 with  servo. 



Stable 

(b) Stable reg ion   wi th  low-pass f i l t e r .  

Stable 

0 1 2 3 4 5 6 7 
K 

(c) Stab le   reg ion   wi th   complementary   f i l t e r .  

Figure 13.- Concluded. 
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Figure 14.-  Block  diagram and stable regions for case 4 w i t h  servo. 
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( b )   S t ab le   r eg ion  w i t h  low-pass f i l t e r .  
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(c) S t a b l e   r e g i o n  w i t h  c a n p l e m e n t a r y   f i l t e r .  

Figure 14.  - Concluded. 
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